|
数学の文脈における「—(の違い)を除いて…」 (… "''up to''" —) という語句は、「— に関する差異を無視する」ことを意味する専門用語である。この言い回しの意味するところは、「適当な目的のもとでは、あるひとつの同値類に属する元全体を、何か単一の実体を表すものとみなせる」ということである。"—" の部分には、何らかの性質や、同じ同値類に属する元(つまり一方は他方に同値となるような元)の間の変換の過程を記述する内容が入る。 たとえば不定積分を計算するとき、その結果は「定数項の違いを除いて」 ''f''(''x'') であるというように言うことができる。その意味は、''f''(''x'') 以外に不定積分 ''g''(''x'') があったとしても ''g''(''x'') = ''f''(''x'') + ''C'' (''C'' は定数)と書くことができ、その後の論理展開において ''f'' のかわりに ''g'' を用いても影響がないことを示唆している。また例えば群論で、群 ''G'' が集合 ''X'' に作用するとき、''X'' のふたつの元が同じ軌道に属するならば、それらは「群作用の違いを除いて」同値であると言い表すことができる。 : 注: 少し砕けた言い方ということにはなるが、同じ目的で「— で割って」「— を法として」(modulo —, mod —) と言い回すこともよく行われる。以下に挙げる例であれば、「位数 4 の群は同型で割れば(mod 同型で)2種類である」とか、「クイーンの名前を法として92個の解がある」といった具合である。この言い回しは合同算術における「7 と 11 とは 4 を法として(あるいは 4 で割った余りが)等しい」というような構文の流用である(もちろん、聞き手がこういった略式の数学用語に慣れていることが前提)。 == 例 == === 卑近な例 === ; テトリス: 簡単な例としては、「回転の違いを除けば全部で 7種類の反射型〔反射型 (reflecting) は鏡像対称なものを同一視しないという意味でついている修飾辞。〕テトロミノが存在する」という文がある。これはテトロミノ (隣接する正方形同士が必ずひとつの辺を共有するように 単位正方形を4つ並べてできる図形、いわゆるテトリスのピース) の配置に七つの可能性 (box, I, L, J, T, S, Z) があることを表している。更に「回転と鏡映の違いを除いて、テトロミノは5種類である」ということもできる。これは七種類のテトロミノのうち、L 字の形のものと J 字の形のもの、また S 字のものと Z 字のものは、それぞれ鏡映対称であることを考慮した結果である。ゲームのテトリスでは反転(鏡映)操作は許されていないので、最初にあげた 7種類のテトロミノを考えるほうが自然である。 : なお、回転などの操作を行わずにすべて数えつくす場合も考えると、(正式な言い方というものはないが)「反射型テトロミノは回転を除いて7種類(総計で19種類)である」というような言い方がされることがよくある。この場合、単純に考えれば7種のピース掛ける4種類の回転で28種類となりそうなものだが、ピースの中には回転しても異なる状態が4種類よりも少ないものがある(たとえばboxなどは明らかに回転不変である)ので実際にはそうはなっていない(テトリスはこの問題を考えるにあたって素晴らしいツールとなる)。 ; エイトクイーン : エイトクイーンパズルでは、8つのクイーンが(名前をつけるなどして)それぞれ別のものと考えることができるならば 3 709 440 個の異なる解がある。しかし通常は8つのクイーンはすべて同じものと考えるので「クイーンを入れ替える違いを除いて、独立な解は 92 (= 3 709 440/8!) 個である」ということができる。ここでは異なる配置が、チェス盤の向きはそのまま動かさず、クイーン全体としての配置も変わらずにクイーン同士で入れ替えを行ったものになっているとき、それらの配置が同値であるものとすることになっている。 : クイーンを同一視することに加えて、チェス盤の回転と反転をも許すことにすれば、一方が他方の対称変換になっている配置は同値であると考えて「対称変換の違いを除けば解は12個しかない」ということができる。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「違いを除いて」の詳細全文を読む 英語版ウィキペディアに対照対訳語「 Up to 」があります。 スポンサード リンク
|